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Abstract 

The equation for polymer concentration fluctuation derived from On&i’s equations of motion is coupled with On&i’s postulate for the 
partial stresses generated by concentration fluctuation to formulate the dynamic structure factor S(q,t) [t is time and q the magnitude of the 
scattering vector]. The actual calculation is made for systems in which the elastic relaxation modulus L(t) is given by a linear combination of 
n exponential functions. It is shown that the corresponding S(q,t) consists of n + 1 exponential functions of time, and that the relative 
strengths and decay rates of these functions are related by a set of algebraic equations to the diffusion coefficient and cooperative diffusion 
coefficient, as well as the parameters characterizing L(t). These equations for n = 2 are used to analyze dynamic light scattering data on semi- 
dilute solutions of a polyisobutylene fraction in isoamyl isovalerate (0 solvent) and n-heptane (good solvent). The results give the 
instantaneous moduli of the solutions which are well compared with the rubbery plateau moduli from viscoelastic measurements, and the 
friction coefficients which are identical for both solvents when compared at comparable polymer concentrations. 0 1998 Elsevier Science 
Ltd. All rights reserved. 

Keywords: Dynamic light scattering; Dynamic structure factor; Relaxation modulus; Diffusion coefficient; Polyisobutylene; Semidilute 
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1. Introduction 

Recent dynamic light scattering (DLS) studies [l-12] on 
semi-dilute and moderately concentrated polymer 
solutions have revealed that the dynamic structure factor 
S(Q) [t is time and q the magnitude of the scattering 
vector] for these solutions is multi-modal and may be 
separated into two parts, usually called fast and slow 
modes. It has been shown that the characteristic decay 
time of the slow mode came close to the maximum 
mechanical relaxation time [l-4,9], and so this mode is 
usually attributed to the viscoelastic deformation of 
polymer molecules due to concentration fluctuation. Of 
great interest are the recent disputes [10,11,13-181, both 
theoretical and experimental, over the theory of Wang 
[13,14], which predicts that the slow mode disappears 
when the polymer and solvent components have 
identical partial specific volumes. In a companion paper 
[19], Einaga and Fujita have made clear why Onuki’s 
formulation [16] does not support Wang’s prediction, 
by comparing the differential equations for polymer 
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concentration fluctuation derived from the starting 
equations of the two theories. 

The present paper formulates S(q,t) by coupling the 
differential equation from Onuki’s theory with the postulate 
that Doi and Onuki [15], and also On&i [16], proposed for 
the partial stresses. The actual calculation is carried out for 
the system whose mechanical relaxation spectrum is repre- 
sented by an array of n discrete line spectra (n is an arbitrary 
integer). The derived relations for n = 2 are applied to 
analyze DLS data on semi-dilute solutions of a polyisobu- 
tylene (PIB) sample in 0 and good solvents. 

2. Theoretical 

2.1. Basic equation 

The system we consider is an equilibrium isothermal, 
incompressible binary solution consisting of a pure solvent 
(component 1) and a monodisperse polymer (component 2). 
For simplicity, it is assumed that the partial specific 
volumes, v1 and v2, of the components are independent of 
the composition. The differential equation for Bc2 derived 
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by Einaga and Fujita [ 191 from Onuki’s equations of motion 
is 

&# = DV26c2 + (~,,,~,/~)V~(V&J,) - (c,,v,l~)V~(V&~,) 

(1) 

where 6c2 is the (mass) concentration fluctuation of compo- 
nent i, 6Ui the partial stress on component i produced by 
concentration fluctuations, and { the friction coefficient 
defined by 

r = cloc2o4Po~) (2) 

with cio and po the mass concentration of component i 
and the solution density at equilibrium, respectively, 
Q Onsager’s phenomenological coefficient, and D the 
mutual diffusion coefficient. The last quantity is defined 

by 

D = c~ovl G’~l~c2h-,,K (3) 

with 7~ the osmotic pressure of the equilibrium solution, T 
the absolute temperature and p the pressure. 

To solve Eq. (1) for 8c2, we need information about V*6ai. 
Although Wang [ 14,201 insists on his own idea, we proceed 
here with On&i’s postulate [16] (also Doi and On&i’s 
[15]), which states that 6al may be neglected and au2 may 
be related to &, the fluctuation of the local velocity of 
component 2, by the constitutive equation 

V&J, = 
I 

L(t - t’)V[V&#)]dt’ (4) 
b 

Here, L(t) denotes the longitudinal relaxation modulus of 
the polymer. The mass conservation law for component 
2 gives acz/& + V.(c2u2) = 0, where c2 is the mass 
concentration of component 2 so that c2 = czo + 6c2, 
and u2 is the local velocity of component 2. Actually, 
the latter can be replaced by 6uZ since the 
equilibrium value of u2 is zero. Thus, it follows for 
Ck2 sufficiently small as compared with ~20 that 
the above mass conservation equation may be replaced 

by 

a&,/at = - ~~~v.8~~ (5) 

With this substituted into Eq. (4), we get 

t 

vh2 = - (lkzo) s ,qt - t’)v[asc2(t’)iat’]dt’ 
0 

Therefore, along with 6ul = 0, Eq. (1) gives 

* 

a&*/at = Dv26c2 + (v~c~~/c~~~) 
I 
L(t - t’)[v2aik2(t’)lat’]dt’ 

0 

(7) 
L(t) = C Li exp ( - t/Ti) 

i=l 
(16) 

This integro-differential equation for 8c2(r,t) provides Here, n is an arbitrary positive integer, and Li and 7i are the 
the basis for deriving a theoretical expression for strength and relaxation time for the ith relaxation mode, and 
Xq,t). the subscript number i is chosen so that TV < 7* < .... The 

2.2. Principle 

If both sides of Eq. (7) are Fourier transformed first with 
respect to r and then with respect to t, we obtain 

[Dq* + iw + Cq2&w)]S~2(q, w) = [ 1 + Cq2i(w)/(iw)]SiZ2(q, 0) 

(8) 

where 
m 

8Z2(q, w) = 
I 

exp( - iwt)6c2(q, t)dt (9) 
0 

m 

i = iw 
I 

exp( - iwt)L(t)dt (10) 
0 

c = cloh~(c2o~) (11) 

with 6c2(q,t) being the q component of space Fourier- 
transformed &#,t). 

The definition of the (normalized) dynamic structure 
factor S(q,t) is 

S(q, t) = &%(q, 0) * 6c,(q, t))@c*(q, 0) * 6c2(4,ON (12) 

where * denotes the complex conjugate. Then, according to 
the Wiener-Khinchin theorem, $4, w), the Fourier 
transform of S(q,t), i.e. 

01 

j(q, w) = exp( - iwt)S(q, t)dt (13) 
0 

is given by 

%I, w) = &*(q, 0) * 6?2(q, wMWq, 0) * 6?2(q, 0)) (14) 

The use of Eq. (8) to calculate the right-hand side of this 
equation gives 

A 

%I, w> = 1 + CL(w)q*/(iw) 

Dq* + iw + Ci(w)q* 
(15) 

The principle to approach S(q,t) consists of first calculating 
i(w) from a given L(t), then determining !?(q, w) by Eq. (15), 
and finally Fourier inverting it to S(q,t) by Eq. (13). 

2.3. Discrete relaxation spectrum 

Though not feasible for an arbitrary form of e(w) or L(t), 
these operations can be carried through analytically for the 
prototype case in which the mechanical relaxation spectrum 
is approximated by an array of discrete line spectra, so that 
L(t) is represented by 

” 
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process and main results of the analytic calculation are sum- 
marized in Appendix A. We see that S(q,t) corresponding to 
L(t) given by Eq. (16) is a linear combination of IZ + 1 
exponentially decaying functions of time. 

In what follows, we focus on the derived relations for n = 
2 and work out how to use them for analyzing experimental 
S(q,r) data. This restriction to IZ is made, because in practice, 
separating a measured S(q,t) curve into more than three 
exponential functions with accuracy and confidence does 
not seem easy. As shown below, our S(q,t) data were 
successfully decomposed into two or three components. 

For n = 2, Eq. (16) gives 

L(t) = Ltexp( - t/rt) + b exp ( - r/r*) (17) 

with r1 < 72, and the corresponding equation for S(q,t) is 
written as 

(18) 

with r 1 > rz > r3. With this choice of the subscript number 
in mind, we call the first, second and third terms in Eq. (18) 
the fast, slow and slower modes of S(q,t), respectively. 
According to Appendix A, the following set of six relations 
holds among six parameters Ti and ri(i = 1,2,3), and seven 
parameters q, D, C, Li and ri (i = 1,2): 

11 + r2 + r3 = 1 (19) 

rl+r2+r3=D,q2+7;1+721 (20) 
2 -1 -1 

rlr2r3=Dq 71 r2 (21) 

r1r2 +r2r3 + r3r1 = [D(T? + 7~1) 

-1 -1 
+ cL&72- l + 8271- ‘>1q2 + 71 72 (22) 

w2 + r,) + r2(r3 + rd + r3(rl + r2) 

=cz_Qq2+7~1+7~1 (23) 

rlr2r3 + r2r3r1 + r3r1r2 = ~~43~7~ -l +A27;l)q2 

++7p (24) 

where 

r,=L1+-52 (25) 

6i = LiI~ (26) 

D,=D+C& (27) 

These equations allow D, C, Li and ri(i = 1,2) to be 
evaluated when ri and Ti (i = 1,2,3) are determined experi- 
mentally as functions of q. A practical procedure for the 
evaluation is as follows. 

First, with the ri data as a function of q, rl + I’2 + r3, 

l’J2r3, and r1r2 + r2r3 + r3r1 are calculated and plotted 
against q2. According to Eqs. (20)-(22), each of the plots 

should follow a straight line, and D,, ~;l + ~;l, D(T~~~) -1 

D(T; ’ + 7; ‘1 + CL&61 .r2 -’ +a27;l) and r;i$ can be 
determined from the intercepts and slopes. The results 
allow D,, D, ~1 and 72 to be computed separately. However, 
in practice, it is simpler and more desirable to evaluate D 
from first cumulant data by use of Eq. (A16) in Appendix A. 

If the quantity c2(&r/13c~)r,~, usually called the osmotic 
compressibility (or modulus), is denoted here by L,, then it 
follows from Eqs. (3) and (11) that 

D=CL, (28) 

The value of D is already known, and that of L, is obtainable 
from separate thermodynamic measurements including 
static light scattering, osmometry and sedimentation equili- 
brium. Hence, C can be evaluated by use of Eq. (28). Once C 
is known, the friction coefficient r is calculable from Eq. 
(1 l), and Lo from Eq. (27) with the aid of the known values 
of D, and D. Furthermore, L1 and L2 can be evaluated 
separately, but we do not enter this problem here. 

2.4. Limiting forms 

The limiting forms of ri and ri at large and small q 

derived from the set of Eqs. (19)-(24) deserve attention. 
At large q, we get 

ri = L&q2 + (LIT~’ +Z~T; ‘ML, +J!.Q) + 0W2) (29) 

r; 1 = r 1 + L~I(L, + ~0~17~ + o(q - 2, (30) 

r3- l = ii + (L~L*)IT~ + o(q-2) (31) 

rl = DID, + O(qe2) (32) 

r2 =LNW, +WW, +J?J+%-~) (33) 

r3 = WW, + W + Oh ~ 2, (34) 

Eq. (29) warns that the slope of r 1 plotted against q2 may be 
equated to D, only in the region of q2 large enough so that the 
plot clearly shows an asymptote. Eqs. (30) and (31) give another 
warning that the asymptotic values of r2 and r3 at large q2 may 
not be equated to ryl and rT1, respectively, because the fac- 
tors multiplied by r1 and r2 differ in general from unity. 

At small q, we have 

rl=7y1+cLlq2+u(q4) (35) 

r2 = 7; l+ cbq2 + o(q4) (36) 

r3 = Dq2 + 0(q4> (37) 

rl = CLl&[D + 2C&72/(71 - 72)1q4 + 0(q6> (38) 

r2 = C&&D - 2CL171/(71 - 72)]$ + 0(q6) (39) 

r3 = 1 - C&[D(&T: + 627;) + 2CL&62~1~2]q4 + 0(q6) 

(40) 
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The last three equations indicate that, in the region of small 
4, all ri vary in proportion to q4, so the slower mode dom- 
inates S(q,t). Furthermore, comparison between Eqs. (29) 
and (37) shows that the q2 dependence of the decay rate 
moves from the slower mode to the fast mode as q increases. 

3. Experimental 

3.1. Material 

The polyisobutylene (PIB) sample used in this work is a 
fraction L80-3 separated by fractional precipitation with 
benzene and methanol from a commercial product L-80 of 
Enjay Chemical Co. Its weight-average molecular weight 
M, determined in n-heptane at 25.O”C using a Fica50 
light scattering photometer was 8.15 X 105, and the ratio 
of M, to the number-average molecular weight estimated by 
analytical gel permeation chromatography was 1.24. 

Isoamyl isovalerate (IAIV, Tokyo Kasei Kogyo), used as 
a 0 solvent, and n-heptane, used as a good solvent, were 
purified by standard methods. 

3.2. Dynamic light scattering 

DLS measurements were made using a Brookhaven 
Instruments Model BI-200SM light scattering goniometer 
and vertically polarized incident light of 488 nm wave- 
length from a Spectra-Physics Model 2020 argon ion laser 
source equipped with a Model 583 temperature-stabilized 
etalon for single-frequency-mode operation. The photomul- 
tiplier tube was an EM1 9863B/350, and the output was 
processed by a Brookhaven Instruments Model BI2030AT 
autocorrelator with 264 channels. The normalized autocor- 
relation function g@‘(t) of scattered light intensity Z(t) was 
determined at scattering angles ~9 ranging from 30 to 150”, 
and was converted to the field correlation function g”‘(t), 
which is equivalent to our S(q,t), by use of the familiar 
relation 

0.4 

0.2 

0.0 
0 1 2 3 4 

g’*‘(t) = 1 +f)g(‘)(t)12 (41) 

where f is a constant depending on the optical system 
used and can be determined by using the property lim, _ s 
g”‘(t) - 1. 

log t 

Fig. 1. Plots of g@)(t) - 1 against log r for solutions A, B and C at various 
scattering angles 0: 0 is 30, 60, 90, 120 and 150” from right to left, 
respectively. 

The discussion made in the Theoretical section premises 
that a set of measured S(q,t) at given q can be decomposed 
into the sum of exponential functions of time. Thus, we 
attempted the decomposition by utilizing Tobolsky’s ‘pro- 
cedure X’ [21] familiar in the determination of mechanical 
relaxation spectra, and found that all of our S(q,t) data were 
successfully separated into two or three exponential 
functions, as illustrated below. 

DLS measurements were made on two IAIV solutions (A 
and B) and one n-heptane solution (C). The polymer mass 
concentrations c ( = c20 in the Theoretical section) were 
0.0297 and 0.0478 g/cm3 for A and B, respectively, and 

that for C was 0.0445 g/cm3. At these concentrations, the 
polymer chains in the solution are well entangled, because 
cM,l(&M,), a measure of the existence of entanglement, is 
1.8 and 2.8 for A and B, respectively, and 2.6 for C. Here, pi 
is the density of pure polymer and M, the critical molecular 
weight for the onset of the entanglement effect on viscosity 
for pure polymer (pi = 0.9169 g cme3 and M, = ca. 15 000 
for PIB) [22,23]. The measuring temperature was fixed at 
25.0°C, which is the 0 temperature for the system PIWIAIV. 

To prepare the test solution, a dilute solution of the PIB 
sample in cyclohexane was filtered into an optically cleaned 
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1 0-10q2/cm-2 

Fig. 4. Plots of K, against q* for solutions A (triangles) and B (unfilled circles). 

light scattering cell with a Teflon membrane of 0.45 pm 
pore size. The solution was freeze-dried after the cell was 
covered with a Teflon membrane of the same pore size. 
Then, an appropriate amount of filtered solvent IAIV or 
n-heptane was poured into the cell. After the cell was tightly 
sealed, the solution was made homogeneous keeping the 
cell for lo-14 days at cu. 50°C for IAIV and room tempera- 
ture for n-heptane. The value of c was calculated by iteration 
from the measured weight fraction of the polymer, and the 
solution density p. calculated using the published relations 
at 25°C [24,25] 

p. = 0.85066 + 0.0737~ (PIB/IAIV) (42) 

p. = 0.67961+ 0.237~ + 0.1 1c2 (PIBln-heptane) (43) 

These can also be used to compute the partial specific 
volumes vi and v2. 

4. Results and discussion 

4.1. PIB in IAN 

In Fig. 1, the raw data of g’*‘(t) - 1 for solutions A and B 
are plotted against log t, along with those for solution C. It is 
seen that the data points at each scattering angle determined 
with different sampling time intervals make a single com- 
posite curve, which smoothly tends to approach a horizontal 
line given by g(*) - 1 = 0. 

Figs. 2 and 3 depict double logarithmic plots of [go - l] ” 
versus t, each referring to 6 different by 30”, for solutions A 
and B, respectively. By virtue of Eq. (41), these data may be 
viewed as representing the behaviourf”*g”’ or S(q,t) multi- 
plied by a constant. Although the fast and slow modes are 
not separately visible in them, the point is that none of them 
can be fitted by a single exponential function. In other 
words, they consist of a fast mode, and one or more slow 
modes. 

Fig. 4 shows the first cumulant K, for either solution 
A (triangles) or B (unfilled circles) plotted against q*, 
where 4 = 4mo sin(0/2)/Xo with no being the refractive 
index of the solvent and X0 the wavelength of the incident 
light in vacuum. As expected from Eq. (A16), the data 
points for each solution fall on a straight line. This implies 
that the system’s mechanical relaxation times ri are all 
longer than 1 ps, the smallest sampling time interval 
used for our DLS measurements, or that the relaxation 
moduli with ri shorter than 1 ps make no contribution to 
measured S(q,t). The slopes of the straight lines in Fig. 4 
give D = 3.1 s X 10e8 and 2.8* X lo-* cm2 s-l for solutions 
A and B, respectively. The corresponding friction 
coefficients r are computed from the relation 

D = (1 - cv2)L,l(cr) (44) 

which is derived from Eq. (3) with the definition for 
the osmotic compressibility L, taken into account. We 
used v2 = 0.931 cmp3 g-’ obtained from Eq. (42) and 
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Table 1 
Values of the parameters on diffusion and viscoelasticity for polyisobutylene L80-3 (M, = 8.15 X 10’) solutions 

Solution (c/g cme3) 

Dlcm2s-’ 
</dyne s cm-’ 
D&m2 s-’ 
Lddyne cm-’ 
7 ,/s 
rsls 
L t/dyne cm -’ 
L2/dyne cm-’ 

lAIV, 25.O”C(O) 
A (0.0297) 

3.16 x 10-s 
1.7s x 10’2 
7.0s x 10-s 
2.1 x 10s 
1.2 x 10-4 
2.1 x 10-s 
1.8 X lo3 
2.9 X 10’ 

B (0.0478) 

2.8r X 10-s 
3.95 x 10’2 
8.44 x IO-’ 
1.1 x 104 
1.5 x 10-4 
3.1 x 10-r 
8.9 X lo3 
2.3 X lo3 

n-Heptane, 25.O”C 
c (0.0445) 

7.46 x 10-7 
3.96 x 10’2 
8.14 X lo-’ 
1.3 x 104 
1.8 x 10-s 
4.6 X 1O-4 

calculated L, from 

L, = cRT(M, ’ + 2Azc + 3A3c2) (45) 

with Akasaka et al.‘s data [24] of A2 (second virial 
coefficient) = - 0.8 X 10e5 mol - cm3 g2 and A3 (third 
virial coefficient) = 6.3 X low4 mol - cm6 ge3 for a PIE 
sample with M, = 8.72 X 105. The results are summarized 
in Table 1. 

Fig. 5 illustrates the application of the procedure X to 
the data for solution A at fl = 150”. It is seen that the 
data are separated into three exponential functions with 
fair accuracy. We obtained similar success for both A 
and B at all 0 studied, and were able to determine ri and 
I’i(i = 1,2,3) for these solutions as functions of q. Before 
going further with these results, some comments may be in 
order. 

First, though hardly visible on the semi-logarithmic plots 
in Fig. 1, the double-logarithmic plots in Figs 2 and 3 reveal 
wild scattering of the data points in the region of large t, 
more appreciable at smaller 0. Undoubtedly, this was due to 
the presence of dust particles in the test solutions, which we 
failed to remove. Thus, we intentionally discarded such 
scattered data points in applying the procedure X, but it is 
certain that this manipulation made our determination of the 
slower mode of S(q,t) less accurate. 

Second, since the procedure X separates the modes from 
slower to faster decay rate in stepwise fashion, the resulting 
values of rl and I’ 1 unavoidably suffer cumulative errors 
and are hence less reliable. Therefore, we calculated rl 
and P 1 from Eq. (19), and K1 = rlr, + r2r2 + rJ3 with 
the known values of PZ, P3, r-2, r-3 and K1. This latter relation 
can be derived from Eq. (19), Eq. (20) and Eq. (23). The 

Fig. 5. An example of the procedure X for the results for solution A at 0 = 150”. The solid straight lines designated as x = 0, 1 and 2 represent the values 
calculated by fmri exp( - r,r) with i = 1, 2 and 3, respectively. 
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Fig. 6. Plots 0f r, +rZ +r3 (a), rlr2r3 (b) and rlr2 +r2r3 +r3r, (c) 
against q2 for solutions A (triangles) and B (unfilled circles). 

solid curves in Figs 2 and 3, though not clearly seen, have 
been calculated from Eq. (18) with the values of Ti and Pi so 
evaluated. Their good agreement with data points justifies 
our data analysis, but does not always warrant that the mea- 
sured S(q,t) consists of exactly three exponential functions. 

Third, one may argue that [gc2’(t) - 11u2 data are more 
conveniently analyzed with a computer program [3,4,26,27] 
for Laplace transformation to determine the distribution 
function r(F) defined by 

m 

[gc2’(t) - 11’” =f “’ J r(P)exp( - Ft)dF 
0 

(46) 

However, as far as we are aware, no method to extract 
information about L(t) from r(P) is as yet established, and 
the same can be said of the case in which [gc2’(t) - l] 1’2 data 
are fitted by a linear combination of stretched exponential 
functions [4,11]. 

Tests of Eqs. (20)-(22) are presented in Fig. 6. We see 
that our experimental data well obey the q2 dependence 
predicted by these equations. The values of the parameters 
D,, L,,, L1, L2, r1 and r2 calculated from the indicated 
straight lines by the method described in the Theoretical 
section are listed in Table 1, along with those of D 
mentioned above. 

4.2. PIB in n-heptane 

Fig. 7 shows gc2’(t) - 1 data for solution C at five 0. All 
data for this solution were also successfully separated into 
three exponential functions by the procedure X, except at fl 
= 30” where we had to be content with two exponential 
functions, owing to the appreciable scattering of the data 
points in the region of large t. The solid curves, calculated 
from Eq. (18) with the values of ri and Pi determined, again 
show good fit to the data points. 

Fig. 8 plots Kr for solution C against q2. The straight 
line drawn gives D = 7.4~ X 10e7 cm2/s, which together 
with v2 = 1.046 cm3/g from Eq. (43) and the value of L, 
computed by using Akasaka et al.‘s data [25] of A 2 = 2.42 X 
lop4 mol - cm3/g2 and As = 1.74 X lop2 mol - cm6/g3 for 
a PIB sample with M, = 8.90 X 105, gives the value of !: 
given in Table 1. 

Fig. 9 presents tests of Eqs. (20).-(22) for solution C. The 
predicted q2 dependence is well substantiated experimen- 
tally in all cases. The indicated straight lines lead to the 
values of D,, LO, 7, and 72 listed in Table 1. For solution 
C, L1/LO was too small to be estimated accurately. 

4.3. Predictability of mechanical properties 

We now take a look at the numerical values in Table 1. 
First, Lo is comparable for solutions B and C, whose 
concentrations are close. This finding is reasonable, because 
LO in the present context may correspond to the rubbery 
plateau longitudinal modulus LN(c) which is known to be 
usually independent of solvent species. If the rubbery 
plateau shear modulus Gn(c) obeys the familiar relation 
GN(c) = &N(c/p$ [2,28], where the superscript 0 refers to 
the undiluted polymer, we obtain, with eN = 3.2 X 
106dynes/cm2 for PIB [29], (4/3)GN(c) = 4.5 X 103, 
1.2 X lo4 and 1.0 X lo4 dynes/cm2 for solutions A, B 
and C, respectively. While (4/3)GN(c) for solution A is 
about twice as large as LO, those for solutions B and C 
come close to Lo. This finding implies that the method 
described in the Theoretical section is capable of estimating 
the rubbery elastic moduli of entangled polymer solutions 
approximately from measurements of S(q,t). However, we 
must remark that it does not always justify the fundamental 
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Fig. 7. Plots of (1/2)log[g”‘(t) - l] against log I for solution C (c = 0.0445 g cm-‘) at various scattering angles ~9 : 0 is 30,60,90, 120 and 150” from right to 
left, respectively. The solid curves indicate the calculated values (see text). 
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Fig. 8. Plots of K, against q2 for solution C. 
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Fig. 9. Plots of rl + r2 + r3 (a), r,r2r3 (b) and rlr2 + r2r3 + r3r, (c) 
against q2 for solution C. 

assumption of our theoretical development, i.e. the use of 
On&i’s postulate for the partial stresses. 

The values of r for solutions B and C happen to 
agree, despite a great difference in viscosity no between 
their solvents (i.e. q. of IAIV and n-heptane at 25°C 
are 0.0133 and 0.003902 poise, respectively). This 
seemingly surprising finding may help understand the 
factors controlling the friction in entangled polymer 
solutions. 

Finally, Fig. 10 shows the decay rate r 1 of the fast mode 
plotted against $, while Figs 11 and 12 show the strength rl 
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G- P 
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0 5 10 15 

1 0~‘0qz/cm~2 

Fig. 10. Plots of r 1 against q2 for solutions A (triangles), B (unfilled circles) 
and C (filled circles). The dashed straight lines A, B and C represent the 
relation rl = DA* for solutions A, B and C, respectively, and the solid 
lines are drawn parallel to the corresponding dashed lines so as to fit the 
data points at large q2 values. 

of the fast mode and the inverse decay rate r;’ of the 
slower mode plotted against qe2, for solutions A, B and C. 
As q2 increases, the set of data points for each solution 
in Fig. 10 appears to be fitted by a solid line parallel to 
the broken line, representing the first term in Eq. (29), i.e. 
r1 = Da’. Thus, the solid line is the asymptote for ri at 
large q2, and its correct determination is essential for 
the right evaluation of D,. The great deviation of the 
asymptote from the corresponding broken line is 
remarkable, indicating that the second term in Eq. (29) 
plays a significant role in the range of q accessible to 
DLS measurements. In Figs 11 and 12, where the points 
on the ordinate axis represent the calculated values of 
the first term in Eq. (30) or Eq. (31), we see that rI 
strongly depends on q at large q, but less at small q, while 
the q dependence of r3 is relatively mild over a wide range 
of q. The behaviour of rl suggests that the second term in 
Eq. (3 1) is important in the experimentally accessible range 
of q. 
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Fig. 11. Plots of rl against 4-r for solutions A (triangles), I3 (unfilled circles) and C (filled circles). The data points on the ordinate axis represent the values of 
LJ(L, + LO). The solid curves are merely to guide the eye. 
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Fig. 12. Plots of I’;’ against q-’ for solutions A (triangles), B (unfilled circles) and C (filled circles). The data points on the ordinate axis represent the values 
calculated by the first term of Eq. (31). The solid curves are merely to guide the eye. 
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Appendix A 

Eq. (15) combined with Eqs. (10) and (16) yields 

,. B(iw) 
Rq, w) = A(iw) 

where 

(Al) 

A(iw) = (iw + Dq2) fi (iw + 7; ‘) 
j=l 

+iwCq2 $Lj fi (iw+Tkl) 
j=l k= l(k#j) 

(A24 

B(iw)= fi(iw+7;l)+Cq2 2Lj fi (iw+Tkl) 
j=l j=l k= l(k#j) 

(A2b) 

Eq. (A2a) indicates A(iw) to be a polynomial of order n + 1 
in (iw), and predicts that there are n + 1 decay modes of 
S(q,t) [30]. Thus, &q, w) may be represented as 

n+l 

S(q,w)= z -!L- 
j=1 iW+rj 

(A34 

n+l n+l 

x ‘j kFG+,, ciw + rk) 
= j=1 

n+l 

l-b iw + ITj) 
j=l 

with 

Wb) 

n+l 

x rj=l 
j=l 

(A4) 

Here, rj and rj are the decay rate and relative strength of the 
jth decay mode, and the subscript j is arranged so that I’ 1 < 
r2 c r3 < -. Inverse Fourier transformation of Eq. (A3a) 
gives 

n+l 

S(q, t) = x rjemrjt 
j=l 

(A5) 

Eq. (18) in the text is the special case of this equation for 
12 = 2. 

The root-coefficient relations for A(iw) = 0 give 

ntl 

1 rj=D,q2+ 5 Tjl (A@ 
j=l j=l 

(-47) 

n+l ntl 

x x rk 
j=l k=l(k#J] 

‘+&L, fi 7;’ Dq2 
j=l k= l(k#j) 1 

(A9) 

Here, D, is the cooperative diffusion coefficient defined by 

D, = D+CZ.+=C(L,+&) WO) 

with the instantaneous (on the DLS time scale) longitudinal 
modulus Lo given by 

Lo= Eli (Al 1) 
j=l 

The first cumulant Kl for S(q,t) is defined by 

Kr = - [a In S(q, t)/dt],, 

which, with Eq. (A5), gives 

6412) 

n+l 

K1 = x ljI’j (A13) 
j=l 

Now, comparison of the coefficients of (iw)“-’ in Eq. (A2b) 
and in the numerator of Eq. (A3b) gives 

n II+1 n-cl 

j~7~1+cbq2= xrj 1 rk (A14) 
j=l k = I(k#jj) 

which may be rewritten, with the aid of Eq. (A4), Eq. (A6) 
and Eq. (AlO), 

ntl 

x rjrj=Dq2 
j=l 

6415) 

Hence, we have for arbitrary n 

K, = Dq2 (Al@ 
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